Anodic bonding of mid-infrared transparent germanate glasses for high pressure - high temperature microfluidic applications

Autor: Fabrice Célarié, Sandy Morais, Yannick Ledemi, Samuel Marre, Virginie Nazabal, Younes Messaddeq, Julien Ari, Geoffrey Louvet, Bruno Bureau
Přispěvatelé: Institut des Sciences Chimiques de Rennes (ISCR), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Université Laval [Québec] (ULaval), Institut de Physique de Rennes (IPR), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), This work was supported by the Canada Excellence Research Chairs, Government of Canada [photonics innovation], Centre National de la Recherche Scientifique [MI - μHPI], Fonds de Recherche du Québec - Nature et Technologies [strategic cluster], Natural Sciences and Engineering Research Council of Canada [strategic project grant]., ANR-12-SEED-0001,CGSµLab,Micro-laboratoires géologiques sur puce pour l'étude des processus clés du transport réactif multiphasique appliqués au stockage géologique du CO2.(2012), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2020
Předmět:
Materials science
Fabrication
Infrared
microfluidics
Infrared spectroscopy
02 engineering and technology
Substrate (electronics)
010402 general chemistry
01 natural sciences
mid- infrared
anodic bonding
high pressure/high temperature
300 Processing / Synthesis and Recycling
208 Sensors and actuators
General Materials Science
Germanate
Materials of engineering and construction. Mechanics of materials
Germanate glass
[PHYS]Physics [physics]
business.industry
mid-infrared
[CHIM.MATE]Chemical Sciences/Material chemistry
Optical
Magnetic and Electronic Device Materials

505 Optical / Molecular spectroscopy
204 Optics / Optical applications
021001 nanoscience & nanotechnology
0104 chemical sciences
Anodic bonding
TA401-492
Optoelectronics
Microreactor
0210 nano-technology
business
107 Glass and ceramic materials
TP248.13-248.65
Biotechnology
Microfabrication
Zdroj: Science and Technology of Advanced Materials
Science and Technology of Advanced Materials, National Institute for Materials Science, 2020, 21 (1), pp.11-24. ⟨10.1080/14686996.2019.1702861⟩
Science and Technology of Advanced Materials, Vol 21, Iss 1, Pp 11-24 (2020)
Science and Technology of Advanced Materials, 2020, 21 (1), pp.11-24. ⟨10.1080/14686996.2019.1702861⟩
ISSN: 1878-5514
1468-6996
DOI: 10.1080/14686996.2019.1702861
Popis: High pressure/high-temperature microreactors based on silicon-Pyrex® microfabrication technologies have attracted increasing interest in various applications providing optical access in high-pressure flow processes. However, they cannot be coupled to infrared spectroscopy due to the limited optical transparency (up to ~2.7 μm in the infrared region) of the Pyrex® glass substrate employed in the microreactor fabrication. To address this limitation, the alternative approach proposed in this work consists in replacing the Pyrex® glass in the microreactor by a mid-infrared transparent glass with thermal and mechanical properties as close as possible or even better to those of the Pyrex®, including its ability for silicon-wafers coupling by the anodic bonding process. Glasses based on germanate GeO2, known for their excellent transmission in the mid-infrared range and thermal/thermo-mechanical properties, have been thus evaluated and developed for this purpose. The optical, mechanical, thermal and electrical conductivity properties of adapted glass compositions belonging to five vitreous systems have been systemically investigated. The glass composition 70GeO2-15Al2O3-10La2O3-5Na2O (mol.%) was defined as the best candidate and produced in large plates of 50 mm diameter and 1 mm thickness. Anodic bonding tests with Si-wafers have been then successfully conducted, paving the way for the development of fully mid-infrared transparent silicon-glass microreactors.
Graphical abstract
Databáze: OpenAIRE