The Simanca metric admits a regular quantization

Autor: Andrea Loi, Francesco Cannas Aghedu
Rok vydání: 2019
Předmět:
Zdroj: Annals of Global Analysis and Geometry. 56:583-596
ISSN: 1572-9060
0232-704X
DOI: 10.1007/s10455-019-09680-x
Popis: Let $g_S$ be the Simanca metric on the blow-up $\tilde{\mathbb{C}}^2$ of $\mathbb{C}^2$ at the origin. We show that $(\tilde{\mathbb{C}}^2,g_S)$ admits a regular quantization. We use this fact to prove that all coefficients in the Tian-Yau-Zelditch expansion for the Simanca metric vanish and that a dense subset of $(\tilde{\mathbb{C}}^2, g_S)$ admits a Berezin quantization
17 pages. A new theorem and a new remark have been added
Databáze: OpenAIRE