The Simanca metric admits a regular quantization
Autor: | Andrea Loi, Francesco Cannas Aghedu |
---|---|
Rok vydání: | 2019 |
Předmět: |
Mathematics - Differential Geometry
53C55 58C25 58F06 Dense set Quantization (signal processing) 010102 general mathematics 01 natural sciences Combinatorics Differential Geometry (math.DG) Differential geometry 0103 physical sciences Metric (mathematics) FOS: Mathematics 010307 mathematical physics Geometry and Topology 0101 mathematics Mathematics::Symplectic Geometry Analysis Mathematics |
Zdroj: | Annals of Global Analysis and Geometry. 56:583-596 |
ISSN: | 1572-9060 0232-704X |
DOI: | 10.1007/s10455-019-09680-x |
Popis: | Let $g_S$ be the Simanca metric on the blow-up $\tilde{\mathbb{C}}^2$ of $\mathbb{C}^2$ at the origin. We show that $(\tilde{\mathbb{C}}^2,g_S)$ admits a regular quantization. We use this fact to prove that all coefficients in the Tian-Yau-Zelditch expansion for the Simanca metric vanish and that a dense subset of $(\tilde{\mathbb{C}}^2, g_S)$ admits a Berezin quantization 17 pages. A new theorem and a new remark have been added |
Databáze: | OpenAIRE |
Externí odkaz: |