Experimental full wavefield reconstruction and band diagram analysis in a single-phase phononic plate with internal resonators

Autor: Diego Misseroni, Wieslaw Ostachowicz, Marco Miniaci, Federico Bosia, Antonio Gliozzi, Maciej Radzieński, Nicola M. Pugno, Pawel Kudela, Matteo Mazzotti, Nesrine Kherraz
Přispěvatelé: Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Szewalski Institute of Fluid-Flow Machinery [Gdańsk] (IMP), Polska Akademia Nauk = Polish Academy of Sciences (PAN), University of Colorado [Boulder], Politecnico di Torino = Polytechnic of Turin (Polito), Università degli Studi di Trento (UNITN), Université catholique de Lille (UCL)-Université catholique de Lille (UCL), Acoustique - IEMN (ACOUSTIQUE - IEMN), Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Materials science
Acoustics and Ultrasonics
Band gap
Wave propagation
Acoustics
02 engineering and technology
01 natural sciences
Experimental Full Wavefield Reconstruction
Crystal
Resonator
Matrix (mathematics)
0203 mechanical engineering
Wavenumber-Frequency Analysis
Elastic wave propagation
0103 physical sciences
Band diagram
Experimental full wavefield reconstruction
010301 acoustics
Parametric statistics
[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]
36 Experimental Full Waveeld Reconstruction
Elastic Wave Propagation
Mechanical Engineering
Phononic crystals
Elastic metamaterials
Elastic wave propagation
Experimental full wavefield reconstruction
Wavenumber-frequency analysis

Metamaterial
Condensed Matter Physics
Wavenumber-frequency analysis
020303 mechanical engineering & transports
Phononic Crystals
Elastic Metamaterials
Mechanics of Materials
Phononic crystals
Elastic metamaterials
Zdroj: Journal of Sound and Vibration
Journal of Sound and Vibration, Elsevier, 2021, 503, pp.116098. ⟨10.1016/j.jsv.2021.116098⟩
Journal of Sound and Vibration, 2021, 503, pp.116098. ⟨10.1016/j.jsv.2021.116098⟩
ISSN: 0022-460X
1095-8568
DOI: 10.1016/j.jsv.2021.116098⟩
Popis: International audience; Research on phononic crystal architectures has produced many interesting designs in the past years, with useful wave manipulation properties. However, not all of the proposed designs can lead to convenient realizations for practical applications, and only a limited number of them have actually been tested experimentally to verify numerical estimations and demonstrate their feasibility. In this work, we propose a combined numerical-experimental procedure to characterize the dynamic behavior of metamaterials, starting from a simplified 2D design to a real 3D manufactured structure. To do this, we consider a new design of a resonator-type geometry for a phononic crystal, and verify its wave filtering properties in wave propagation experiments. The proposed geometry exploits a circular distribution of cavities in a homogeneous material, leading to a central resonator surrounded by thin ligaments and an external matrix. Parametric simulations are performed to determine the optimal thickness of this design, leading to a large full band gap in the kHz range. Full-field experimental characterization of the resulting phononic crystal using a scanning laser Doppler vibrometer is then performed, showing excellent agreement with numerically predicted band gap properties and with their resulting effects on propagating waves. The outlined procedure can serve as a useful step towards a standardization of metamaterial development and validation procedures.
Databáze: OpenAIRE