Experimental full wavefield reconstruction and band diagram analysis in a single-phase phononic plate with internal resonators
Autor: | Diego Misseroni, Wieslaw Ostachowicz, Marco Miniaci, Federico Bosia, Antonio Gliozzi, Maciej Radzieński, Nicola M. Pugno, Pawel Kudela, Matteo Mazzotti, Nesrine Kherraz |
---|---|
Přispěvatelé: | Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Szewalski Institute of Fluid-Flow Machinery [Gdańsk] (IMP), Polska Akademia Nauk = Polish Academy of Sciences (PAN), University of Colorado [Boulder], Politecnico di Torino = Polytechnic of Turin (Polito), Università degli Studi di Trento (UNITN), Université catholique de Lille (UCL)-Université catholique de Lille (UCL), Acoustique - IEMN (ACOUSTIQUE - IEMN), Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Materials science
Acoustics and Ultrasonics Band gap Wave propagation Acoustics 02 engineering and technology 01 natural sciences Experimental Full Wavefield Reconstruction Crystal Resonator Matrix (mathematics) 0203 mechanical engineering Wavenumber-Frequency Analysis Elastic wave propagation 0103 physical sciences Band diagram Experimental full wavefield reconstruction 010301 acoustics Parametric statistics [SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] 36 Experimental Full Waveeld Reconstruction Elastic Wave Propagation Mechanical Engineering Phononic crystals Elastic metamaterials Elastic wave propagation Experimental full wavefield reconstruction Wavenumber-frequency analysis Metamaterial Condensed Matter Physics Wavenumber-frequency analysis 020303 mechanical engineering & transports Phononic Crystals Elastic Metamaterials Mechanics of Materials Phononic crystals Elastic metamaterials |
Zdroj: | Journal of Sound and Vibration Journal of Sound and Vibration, Elsevier, 2021, 503, pp.116098. ⟨10.1016/j.jsv.2021.116098⟩ Journal of Sound and Vibration, 2021, 503, pp.116098. ⟨10.1016/j.jsv.2021.116098⟩ |
ISSN: | 0022-460X 1095-8568 |
DOI: | 10.1016/j.jsv.2021.116098⟩ |
Popis: | International audience; Research on phononic crystal architectures has produced many interesting designs in the past years, with useful wave manipulation properties. However, not all of the proposed designs can lead to convenient realizations for practical applications, and only a limited number of them have actually been tested experimentally to verify numerical estimations and demonstrate their feasibility. In this work, we propose a combined numerical-experimental procedure to characterize the dynamic behavior of metamaterials, starting from a simplified 2D design to a real 3D manufactured structure. To do this, we consider a new design of a resonator-type geometry for a phononic crystal, and verify its wave filtering properties in wave propagation experiments. The proposed geometry exploits a circular distribution of cavities in a homogeneous material, leading to a central resonator surrounded by thin ligaments and an external matrix. Parametric simulations are performed to determine the optimal thickness of this design, leading to a large full band gap in the kHz range. Full-field experimental characterization of the resulting phononic crystal using a scanning laser Doppler vibrometer is then performed, showing excellent agreement with numerically predicted band gap properties and with their resulting effects on propagating waves. The outlined procedure can serve as a useful step towards a standardization of metamaterial development and validation procedures. |
Databáze: | OpenAIRE |
Externí odkaz: |