CONVEXITY FOR HAMILTONIAN TORUS ACTIONS ON b-SYMPLECTIC MANIFOLDS

Autor: Geoffrey Scott, Eva Miranda Galcerán, Ana Rita Pires, Victor Guillemin
Přispěvatelé: Massachusetts Institute of Technology (MIT), Departament de Matemàtiques [Barcelona] (UAB), Universitat Autònoma de Barcelona (UAB), Observatoire de Paris, Université Paris sciences et lettres (PSL), Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: Mathematical Research Letters
Mathematical Research Letters, 2016
Recercat. Dipósit de la Recerca de Catalunya
instname
Scopus-Elsevier
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Guillemin, V, Miranda, E, Pires, A R & Scott, G 2017, ' Convexity for Hamiltonian torus actions on b-symplectic manifolds ', Mathematical research letters, vol. 24, no. 2, pp. 363-377 . https://doi.org/10.4310/MRL.2017.v24.n2.a5
DOI: 10.4310/MRL.2017.v24.n2.a5
Popis: In [GMPS] we proved that the moment map image of a $b$-symplectic toric manifold is a convex $b$-polytope. In this paper we obtain convexity results for the more general case of non-toric hamiltonian torus actions on $b$-symplectic manifolds. The modular weights of the action on the connected components of the exceptional hypersurface play a fundamental role: either they are all zero and the moment map behaves as in classic symplectic one, or they are all nonzero and the moment map behaves as in the toric $b$-symplectic case studied in [GMPS].
Comment: 12 pages final version to appear at Mathematical Research Letters
Databáze: OpenAIRE