CONVEXITY FOR HAMILTONIAN TORUS ACTIONS ON b-SYMPLECTIC MANIFOLDS
Autor: | Geoffrey Scott, Eva Miranda Galcerán, Ana Rita Pires, Victor Guillemin |
---|---|
Přispěvatelé: | Massachusetts Institute of Technology (MIT), Departament de Matemàtiques [Barcelona] (UAB), Universitat Autònoma de Barcelona (UAB), Observatoire de Paris, Université Paris sciences et lettres (PSL), Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions |
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
Mathematics - Differential Geometry
53D05 53D17 53D20 General Mathematics 01 natural sciences Convexity Matemàtiques i estadística::Equacions diferencials i integrals [Àrees temàtiques de la UPC] symbols.namesake 0103 physical sciences FOS: Mathematics Sistemes hamiltonians 0101 mathematics Hamiltonian systems [MATH]Mathematics [math] Mathematics::Symplectic Geometry Mathematical physics Mathematics Differential Geometry 010102 general mathematics Torus Symplectic Geometry 16. Peace & justice Differential geometry Differential Geometry (math.DG) Mathematics - Symplectic Geometry symbols Symplectic Geometry (math.SG) 010307 mathematical physics Hamiltonian (quantum mechanics) Symplectic geometry |
Zdroj: | Mathematical Research Letters Mathematical Research Letters, 2016 Recercat. Dipósit de la Recerca de Catalunya instname Scopus-Elsevier UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) Guillemin, V, Miranda, E, Pires, A R & Scott, G 2017, ' Convexity for Hamiltonian torus actions on b-symplectic manifolds ', Mathematical research letters, vol. 24, no. 2, pp. 363-377 . https://doi.org/10.4310/MRL.2017.v24.n2.a5 |
DOI: | 10.4310/MRL.2017.v24.n2.a5 |
Popis: | In [GMPS] we proved that the moment map image of a $b$-symplectic toric manifold is a convex $b$-polytope. In this paper we obtain convexity results for the more general case of non-toric hamiltonian torus actions on $b$-symplectic manifolds. The modular weights of the action on the connected components of the exceptional hypersurface play a fundamental role: either they are all zero and the moment map behaves as in classic symplectic one, or they are all nonzero and the moment map behaves as in the toric $b$-symplectic case studied in [GMPS]. Comment: 12 pages final version to appear at Mathematical Research Letters |
Databáze: | OpenAIRE |
Externí odkaz: |