HR-length of a free group via polynomial functors

Autor: Sergei O. Ivanov, Roman Mikhailov
Rok vydání: 2021
Předmět:
DOI: 10.48550/arxiv.2111.11835
Popis: We prove that for a subring $R\subseteq \mathbb Q$ and a free group $F$ of rank at least $2$ the length of the Bousfield's $HR$-localization tower for $F$ is at least $\omega+\omega$. The key ingredient of the proof is the theory of polynomial functors over $\mathbb Q.$
Databáze: OpenAIRE