HR-length of a free group via polynomial functors
Autor: | Sergei O. Ivanov, Roman Mikhailov |
---|---|
Rok vydání: | 2021 |
Předmět: | |
DOI: | 10.48550/arxiv.2111.11835 |
Popis: | We prove that for a subring $R\subseteq \mathbb Q$ and a free group $F$ of rank at least $2$ the length of the Bousfield's $HR$-localization tower for $F$ is at least $\omega+\omega$. The key ingredient of the proof is the theory of polynomial functors over $\mathbb Q.$ |
Databáze: | OpenAIRE |
Externí odkaz: |