Uniqueness of the de Sitter spacetime among static vacua with positive cosmological constant
Autor: | Sebastián Montiel, Oussama Hijazi, Simon Raulot |
---|---|
Přispěvatelé: | Universidad de Granada (UGR), Laboratoire de Mathématiques Raphaël Salem (LMRS), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: |
Mathematics - Differential Geometry
de Sitter spacetime Dirac operator Cosmological constant Induced metric symbols.namesake General Relativity and Quantum Cosmology [MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM] [MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] De Sitter universe FOS: Mathematics Tensor Uniqueness Mathematical physics Mathematics Differential Geometry Global Analysis 53C27 53C40 53C80 58G25 Spacetime Static vacuum Killing horizon Differential Geometry (math.DG) [MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] Horizon (general relativity) symbols Geometry and Topology Analysis |
Zdroj: | Annals of Global Analysis and Geometry Annals of Global Analysis and Geometry, Springer Verlag, 2015, 47 (2), pp.167-178. ⟨10.1007/s10455-014-9441-1⟩ |
ISSN: | 0232-704X 1572-9060 |
DOI: | 10.1007/s10455-014-9441-1⟩ |
Popis: | We prove that, among all (n + 1)-dimensional spin static vacua with positive cosmological constant, the de Sitter spacetime is characterized by the fact that its spatial Killing hori-zons have minimal modes for the Dirac operator. As a consequence, the de Sitter spacetime is the only vacuum of this type for which the induced metric tensor on some of its Killing horizons is at least equal to that of a round (n -- 1)-sphere. This extends unique-ness theorems shown by Boucher-Gibbons-Horowitz and Chruciel to more general horizon metrics and to the non-single horizon case. Comment: in Annals of Global Analysis and Geometry, Springer Verlag (Germany), 2014 |
Databáze: | OpenAIRE |
Externí odkaz: |