Uniqueness of the de Sitter spacetime among static vacua with positive cosmological constant

Autor: Sebastián Montiel, Oussama Hijazi, Simon Raulot
Přispěvatelé: Universidad de Granada (UGR), Laboratoire de Mathématiques Raphaël Salem (LMRS), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Zdroj: Annals of Global Analysis and Geometry
Annals of Global Analysis and Geometry, Springer Verlag, 2015, 47 (2), pp.167-178. ⟨10.1007/s10455-014-9441-1⟩
ISSN: 0232-704X
1572-9060
DOI: 10.1007/s10455-014-9441-1⟩
Popis: We prove that, among all (n + 1)-dimensional spin static vacua with positive cosmological constant, the de Sitter spacetime is characterized by the fact that its spatial Killing hori-zons have minimal modes for the Dirac operator. As a consequence, the de Sitter spacetime is the only vacuum of this type for which the induced metric tensor on some of its Killing horizons is at least equal to that of a round (n -- 1)-sphere. This extends unique-ness theorems shown by Boucher-Gibbons-Horowitz and Chruciel to more general horizon metrics and to the non-single horizon case.
Comment: in Annals of Global Analysis and Geometry, Springer Verlag (Germany), 2014
Databáze: OpenAIRE