Exceptional algebroids and type IIB superstrings

Autor: Fridrich Valach, Daniel Waldram, Ondrej Hulik, Mark Bugden
Přispěvatelé: Science and Technology Facilities Council (STFC)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Tangent bundle
High Energy Physics - Theory
Mathematics - Differential Geometry
Poisson-Lie U-duality
Pure mathematics
exceptional field theory
Algebraic problem
Physics
Multidisciplinary

math-ph
FOS: Physical sciences
General Physics and Astronomy
01 natural sciences
Interpretation (model theory)
generalised geometry
math.MP
DUALITY
Simple (abstract algebra)
0103 physical sciences
FOS: Mathematics
010306 general physics
01 Mathematical Sciences
Mathematical Physics
Physics
Standard form
Science & Technology
02 Physical Sciences
010308 nuclear & particles physics
Group (mathematics)
hep-th
Superstring theory
Mathematical Physics (math-ph)
Nuclear & Particles Physics
math.DG
Type iib
High Energy Physics - Theory (hep-th)
Differential Geometry (math.DG)
Physical Sciences
type IIB superstring
Yang-Baxter deformations
Popis: In this note we study exceptional algebroids, focusing on their relation to type IIB superstring theory. We show that a IIB-exact exceptional algebroid (corresponding to the group $E_{n(n)}\times \mathbb{R}^+$, for $n\le 6$) locally has a standard form given by the exceptional tangent bundle. We derive possible twists, given by a flat $\mathfrak{gl}(2,\mathbb{R})$-connection, a covariantly closed pair of 3-forms, and a 5-form, and comment on their physical interpretation. Using this analysis we reduce the search for Leibniz parallelisable spaces, and hence maximally supersymmetric consistent truncations, to a simple algebraic problem. We show that the exceptional algebroid perspective also gives a simple description of Poisson-Lie U-duality without spectators and hence of generalised Yang-Baxter deformations.
12 pages
Databáze: OpenAIRE