Exceptional algebroids and type IIB superstrings
Autor: | Fridrich Valach, Daniel Waldram, Ondrej Hulik, Mark Bugden |
---|---|
Přispěvatelé: | Science and Technology Facilities Council (STFC) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Tangent bundle
High Energy Physics - Theory Mathematics - Differential Geometry Poisson-Lie U-duality Pure mathematics exceptional field theory Algebraic problem Physics Multidisciplinary math-ph FOS: Physical sciences General Physics and Astronomy 01 natural sciences Interpretation (model theory) generalised geometry math.MP DUALITY Simple (abstract algebra) 0103 physical sciences FOS: Mathematics 010306 general physics 01 Mathematical Sciences Mathematical Physics Physics Standard form Science & Technology 02 Physical Sciences 010308 nuclear & particles physics Group (mathematics) hep-th Superstring theory Mathematical Physics (math-ph) Nuclear & Particles Physics math.DG Type iib High Energy Physics - Theory (hep-th) Differential Geometry (math.DG) Physical Sciences type IIB superstring Yang-Baxter deformations |
Popis: | In this note we study exceptional algebroids, focusing on their relation to type IIB superstring theory. We show that a IIB-exact exceptional algebroid (corresponding to the group $E_{n(n)}\times \mathbb{R}^+$, for $n\le 6$) locally has a standard form given by the exceptional tangent bundle. We derive possible twists, given by a flat $\mathfrak{gl}(2,\mathbb{R})$-connection, a covariantly closed pair of 3-forms, and a 5-form, and comment on their physical interpretation. Using this analysis we reduce the search for Leibniz parallelisable spaces, and hence maximally supersymmetric consistent truncations, to a simple algebraic problem. We show that the exceptional algebroid perspective also gives a simple description of Poisson-Lie U-duality without spectators and hence of generalised Yang-Baxter deformations. 12 pages |
Databáze: | OpenAIRE |
Externí odkaz: |