On the number of connected components of the ramification locus of a morphism of Berkovich curves

Autor: Jérôme Poineau, Velibor Bojković
Přispěvatelé: Dipartimento di Matematica 'Tullio Levi-Civita', Universita degli Studi di Padova, Laboratoire de Mathématiques Nicolas Oresme (LMNO), Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)
Jazyk: angličtina
Předmět:
Zdroj: Mathematische Annalen
Mathematische Annalen, Springer Verlag, 2018, 372 (3-4), pp.1575-1595. ⟨10.1007/s00208-018-1668-x⟩
ISSN: 1432-1807
0025-5831
DOI: 10.1007/s00208-018-1668-x
Popis: Let $k$ be a complete, nontrivially valued non-archimedean field. Given a finite morphism of quasi-smooth $k$-analytic curves that admit finite triangulations, we provide upper bounds for the number of connected components of the ramification locus in terms of topological invariants of the source curve such as its topological genus, the number of points in the boundary and the number of open ends.
Comment: 20 pages, 3 figures; Final version, Accepted in Mathematische Annalen
Databáze: OpenAIRE