On the number of connected components of the ramification locus of a morphism of Berkovich curves
Autor: | Jérôme Poineau, Velibor Bojković |
---|---|
Přispěvatelé: | Dipartimento di Matematica 'Tullio Levi-Civita', Universita degli Studi di Padova, Laboratoire de Mathématiques Nicolas Oresme (LMNO), Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU) |
Jazyk: | angličtina |
Předmět: |
Connected component
Pure mathematics Mathematics - Number Theory General Mathematics 010102 general mathematics 01 natural sciences Finite morphism Mathematics - Algebraic Geometry Morphism Mathematics::Algebraic Geometry 0103 physical sciences Topological invariants 010307 mathematical physics 0101 mathematics Locus (mathematics) [MATH]Mathematics [math] 14G22 11S15 ComputingMilieux_MISCELLANEOUS Mathematics |
Zdroj: | Mathematische Annalen Mathematische Annalen, Springer Verlag, 2018, 372 (3-4), pp.1575-1595. ⟨10.1007/s00208-018-1668-x⟩ |
ISSN: | 1432-1807 0025-5831 |
DOI: | 10.1007/s00208-018-1668-x |
Popis: | Let $k$ be a complete, nontrivially valued non-archimedean field. Given a finite morphism of quasi-smooth $k$-analytic curves that admit finite triangulations, we provide upper bounds for the number of connected components of the ramification locus in terms of topological invariants of the source curve such as its topological genus, the number of points in the boundary and the number of open ends. Comment: 20 pages, 3 figures; Final version, Accepted in Mathematische Annalen |
Databáze: | OpenAIRE |
Externí odkaz: |