Generalized Bivariate Kummer-Beta Distribution

Autor: Edwin Zarrazola, Jessica Serna-Morales, Daya K. Nagar
Přispěvatelé: Universidad de Antioquia, Universidad Nacional de Colombia
Rok vydání: 2020
Předmět:
Zdroj: Revista Ingeniería y Ciencias, Vol. 16 Núm. 32 (2020)
Ingeniería y Ciencia, Vol 16, Iss 32 (2020)
ISSN: 2256-4314
1794-9165
DOI: 10.17230/ingciencia.16.32.1
Popis: A new bivariate beta distribution based on the Humbert’s confluent hypergeometric function of the second kind is introduced. Various representations are derived for its product moments, marginal densities, marginal moments, conditional densities and entropies.
En este artículo se propone una nueva distribución beta bivariada basadaen distribuciones hipergeométricas Humbert de segundo tipo. Tambiénse derivan las representaciones de las densidades marginales, momentosmarginales y productos, densidades condicionales y entropía.
Databáze: OpenAIRE