X-RAY TRANSFORM IN ASYMPTOTICALLY CONIC SPACES
Autor: | Leo Tzou, Matti Lassas, Colin Guillarmou |
---|---|
Přispěvatelé: | Guillarmou, Colin, Department of Mathematics and Statistics, Inverse Problems, Matti Lassas / Principal Investigator, Université Paris-Saclay, University of Helsinki, University of Sydney, Sydney, Australia. |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Mathematics - Differential Geometry
Geodesic General Mathematics [MATH] Mathematics [math] 01 natural sciences law.invention Mathematics - Analysis of PDEs law 0103 physical sciences Euclidean geometry 111 Mathematics FOS: Mathematics [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] Point (geometry) [MATH]Mathematics [math] 0101 mathematics [MATH.MATH-AP] Mathematics [math]/Analysis of PDEs [math.AP] Mathematics X-ray transform 010102 general mathematics Mathematical analysis RECOVERING ASYMPTOTICS RIGIDITY Inverse problem METRICS Lens (optics) Differential Geometry (math.DG) [MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] Conic section MANIFOLDS 010307 mathematical physics [MATH.MATH-DG] Mathematics [math]/Differential Geometry [math.DG] Analysis of PDEs (math.AP) |
Zdroj: | HAL International Mathematics Research Notices International Mathematics Research Notices, Oxford University Press (OUP), In press |
ISSN: | 1073-7928 1687-0247 |
Popis: | In this article, we study the properties of the geodesic X-ray transform for asymptotically Euclidean or conic Riemannian metrics and show injectivity under non-trapping and no conjugate point assumptions. We also define a notion of lens data for such metrics and study the associated inverse problem. Comment: 48 pages, minor corrections after refereeing process |
Databáze: | OpenAIRE |
Externí odkaz: |