X-RAY TRANSFORM IN ASYMPTOTICALLY CONIC SPACES

Autor: Leo Tzou, Matti Lassas, Colin Guillarmou
Přispěvatelé: Guillarmou, Colin, Department of Mathematics and Statistics, Inverse Problems, Matti Lassas / Principal Investigator, Université Paris-Saclay, University of Helsinki, University of Sydney, Sydney, Australia.
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Mathematics - Differential Geometry
Geodesic
General Mathematics
[MATH] Mathematics [math]
01 natural sciences
law.invention
Mathematics - Analysis of PDEs
law
0103 physical sciences
Euclidean geometry
111 Mathematics
FOS: Mathematics
[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]
Point (geometry)
[MATH]Mathematics [math]
0101 mathematics
[MATH.MATH-AP] Mathematics [math]/Analysis of PDEs [math.AP]
Mathematics
X-ray transform
010102 general mathematics
Mathematical analysis
RECOVERING ASYMPTOTICS
RIGIDITY
Inverse problem
METRICS
Lens (optics)
Differential Geometry (math.DG)
[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]
Conic section
MANIFOLDS
010307 mathematical physics
[MATH.MATH-DG] Mathematics [math]/Differential Geometry [math.DG]
Analysis of PDEs (math.AP)
Zdroj: HAL
International Mathematics Research Notices
International Mathematics Research Notices, Oxford University Press (OUP), In press
ISSN: 1073-7928
1687-0247
Popis: In this article, we study the properties of the geodesic X-ray transform for asymptotically Euclidean or conic Riemannian metrics and show injectivity under non-trapping and no conjugate point assumptions. We also define a notion of lens data for such metrics and study the associated inverse problem.
Comment: 48 pages, minor corrections after refereeing process
Databáze: OpenAIRE