Mathematical models and fractal analysis for the investigation of the photodynamic inactivation in phytopathogenic microorganisms

Autor: Nara C. de Souza, Alessandro S. Kalck, Josmary R. Silva, Maria F. Costa Pedro, Marcos S. Sousa, Kevin F. dos Santos
Rok vydání: 2018
Předmět:
Zdroj: Colloids and Surfaces B: Biointerfaces. 171:285-290
ISSN: 0927-7765
DOI: 10.1016/j.colsurfb.2018.07.019
Popis: The increasing and indiscriminate use of pesticides may lead to the intoxication and contamination of the environment and foods. In addition, pesticides can cause fungal resistance promoting the selection of resistant phytopathogenic fungi. This is a problem in the agricultural and human health areas, which leads to a need for developing new methodologies to address this problem. Photodynamic inactivation is a promising strategy involving the association of a photosensitizer (PS), light, and molecular oxygen to inhibit the growth of microorganisms. In this work, the PS acridine orange (AO) was deposited using the spray layer-by-layer technique. The effectiveness of the method was evaluated by the analysis of the growth evolution of the colonies as a function of the amount of PS layers applied in field in the presence of sunlight. Image processing and analysis of the fractal theory were used to evaluate the growth of the colonies. The results revealed that AO is a candidate PS for use in field. It was possible to observe the reduction of the growth dynamics of the colonies with the increase of the number of PS layers. The parameters related to the fractality of the system were described by mathematical models of the fractal growth of interfaces. The knowledge of these parameters can help to identify new strategies for the control of phytopathogenic microorganisms that directly affect agricultural production.
Databáze: OpenAIRE