On Spherical CR Uniformization of 3-Manifolds
Autor: | Martin Deraux |
---|---|
Přispěvatelé: | Institut Fourier (IF ), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), NSF via the GEAR network / DMS 1107452, 1107263, 1107367, ANR-11-BS01-0018,SGT,Structures Géometriques et Triangulations(2011), Institut Fourier (IF), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), ANR: Structures Géométrique Triangulées,Structures Géométrique Triangulées |
Rok vydání: | 2015 |
Předmět: |
Mathematics - Differential Geometry
Pure mathematics Discrete representation General Mathematics Hyperbolic geometry Holonomy Boundary (topology) Geometric Topology (math.GT) Unipotent Algebra Mathematics - Geometric Topology Complex geometry Differential Geometry (math.DG) [MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] [MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT] FOS: Mathematics Mathematics::Differential Geometry Uniformization (set theory) Mathematics |
Zdroj: | Experimental Mathematics Experimental Mathematics, Taylor & Francis, 2015, 24 (3), pp 355-370. ⟨10.1080/10586458.2014.996835⟩ |
ISSN: | 1944-950X 1058-6458 |
DOI: | 10.1080/10586458.2014.996835 |
Popis: | We consider the discrete representations of 3-manifold groups into $PU(2,1)$ that appear in the Falbel-Koseleff-Rouillier census, such that the peripheral subgroups have cyclic unipotent holonomy. We show that two of these representations have conjugate images, even though they represent different 3-manifold groups. This illustrates the fact that a discrete representation $\pi_1(M)\rightarrow PU(2,1)$ with cyclic unipotent boundary holonomy is not in general the holonomy of a spherical CR uniformization of $M$. |
Databáze: | OpenAIRE |
Externí odkaz: |