On Spherical CR Uniformization of 3-Manifolds

Autor: Martin Deraux
Přispěvatelé: Institut Fourier (IF ), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), NSF via the GEAR network / DMS 1107452, 1107263, 1107367, ANR-11-BS01-0018,SGT,Structures Géometriques et Triangulations(2011), Institut Fourier (IF), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), ANR: Structures Géométrique Triangulées,Structures Géométrique Triangulées
Rok vydání: 2015
Předmět:
Zdroj: Experimental Mathematics
Experimental Mathematics, Taylor & Francis, 2015, 24 (3), pp 355-370. ⟨10.1080/10586458.2014.996835⟩
ISSN: 1944-950X
1058-6458
DOI: 10.1080/10586458.2014.996835
Popis: We consider the discrete representations of 3-manifold groups into $PU(2,1)$ that appear in the Falbel-Koseleff-Rouillier census, such that the peripheral subgroups have cyclic unipotent holonomy. We show that two of these representations have conjugate images, even though they represent different 3-manifold groups. This illustrates the fact that a discrete representation $\pi_1(M)\rightarrow PU(2,1)$ with cyclic unipotent boundary holonomy is not in general the holonomy of a spherical CR uniformization of $M$.
Databáze: OpenAIRE