Interaction indices for multichoice games
Autor: | Mustapha Ridaoui, Christophe Labreuche, Michel Grabisch |
---|---|
Přispěvatelé: | Centre d'économie de la Sorbonne (CES), Université Paris 1 Panthéon-Sorbonne (UP1)-Centre National de la Recherche Scientifique (CNRS), Paris School of Economics (PSE), École des Ponts ParisTech (ENPC)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris 1 Panthéon-Sorbonne (UP1)-Centre National de la Recherche Scientifique (CNRS)-École des hautes études en sciences sociales (EHESS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Thales Research and Technology [Palaiseau], THALES |
Rok vydání: | 2020 |
Předmět: |
Multicriteria decision
Choquet inte- gral 0209 industrial biotechnology Index (economics) Logic Continuous modelling Group (mathematics) interaction 02 engineering and technology multichoice game [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] multicriteria decision analysis [SHS.ECO]Humanities and Social Sciences/Economics and Finance Multiple-criteria decision analysis 020901 industrial engineering & automation Choquet integral Artificial Intelligence 0202 electrical engineering electronic engineering information engineering Applied mathematics 020201 artificial intelligence & image processing Interaction index Mathematics |
Zdroj: | Fuzzy Sets and Systems Fuzzy Sets and Systems, Elsevier, 2020, 383, ⟨10.1016/j.fss.2019.04.008⟩ |
ISSN: | 0165-0114 |
DOI: | 10.1016/j.fss.2019.04.008 |
Popis: | International audience; Models in Multicriteria Decision Analysis (MCDA) can be analyzed by means of an importance index and an interaction index for every group of criteria. We consider first discrete models in MCDA, without further restriction, which amounts to considering multichoice games, that is, cooperative games with several levels of participation. We propose and axiomatize two interaction indices for multichoice games: the signed interaction index and the absolute interaction index. In a second part, we consider the continuous case, supposing that the continuous model is obtained from a discrete one by means of the Choquet integral. We show that, as in the case of classical games, the interaction index defined for continuous aggre-gation functions coincides with the (signed) interaction index, up to a normalizing coefficient. |
Databáze: | OpenAIRE |
Externí odkaz: |