Interaction indices for multichoice games

Autor: Mustapha Ridaoui, Christophe Labreuche, Michel Grabisch
Přispěvatelé: Centre d'économie de la Sorbonne (CES), Université Paris 1 Panthéon-Sorbonne (UP1)-Centre National de la Recherche Scientifique (CNRS), Paris School of Economics (PSE), École des Ponts ParisTech (ENPC)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris 1 Panthéon-Sorbonne (UP1)-Centre National de la Recherche Scientifique (CNRS)-École des hautes études en sciences sociales (EHESS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Thales Research and Technology [Palaiseau], THALES
Rok vydání: 2020
Předmět:
Zdroj: Fuzzy Sets and Systems
Fuzzy Sets and Systems, Elsevier, 2020, 383, ⟨10.1016/j.fss.2019.04.008⟩
ISSN: 0165-0114
DOI: 10.1016/j.fss.2019.04.008
Popis: International audience; Models in Multicriteria Decision Analysis (MCDA) can be analyzed by means of an importance index and an interaction index for every group of criteria. We consider first discrete models in MCDA, without further restriction, which amounts to considering multichoice games, that is, cooperative games with several levels of participation. We propose and axiomatize two interaction indices for multichoice games: the signed interaction index and the absolute interaction index. In a second part, we consider the continuous case, supposing that the continuous model is obtained from a discrete one by means of the Choquet integral. We show that, as in the case of classical games, the interaction index defined for continuous aggre-gation functions coincides with the (signed) interaction index, up to a normalizing coefficient.
Databáze: OpenAIRE