A proof of Sørensen’s conjecture on Hermitian surfaces
Autor: | Mrinmoy Datta, Masaaki Homma, Peter Beelen |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Beelen, P, Datta, M & Homma, M 2021, ' A proof of sørensen’s conjecture on hermitian surfaces ', Proceedings of the American Mathematical Society, vol. 149, no. 4, pp. 1431-1441 . https://doi.org/10.1090/proc/15331 |
ISSN: | 1088-6826 0002-9939 |
DOI: | 10.1090/proc/15331 |
Popis: | In this article we prove a conjecture formulated by A. B. Sørensen in 1991 on the maximal number of F q 2 \mathbb {F}_{q^2} -rational points on the intersection of a non-degenerate Hermitian surface and a surface of degree d ≤ q . d \le q. |
Databáze: | OpenAIRE |
Externí odkaz: |