A proof of Sørensen’s conjecture on Hermitian surfaces

Autor: Mrinmoy Datta, Masaaki Homma, Peter Beelen
Rok vydání: 2021
Předmět:
Zdroj: Beelen, P, Datta, M & Homma, M 2021, ' A proof of sørensen’s conjecture on hermitian surfaces ', Proceedings of the American Mathematical Society, vol. 149, no. 4, pp. 1431-1441 . https://doi.org/10.1090/proc/15331
ISSN: 1088-6826
0002-9939
DOI: 10.1090/proc/15331
Popis: In this article we prove a conjecture formulated by A. B. Sørensen in 1991 on the maximal number of F q 2 \mathbb {F}_{q^2} -rational points on the intersection of a non-degenerate Hermitian surface and a surface of degree d ≤ q . d \le q.
Databáze: OpenAIRE