Semi-Classical Limit and Least Action Principle Revisited with (min,+) Path Integral and Action-Particle Duality

Autor: Michel Gondran, Abdelouahab Kenoufi, Alexandre Gondran
Přispěvatelé: Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes (LIMOS), Ecole Nationale Supérieure des Mines de St Etienne-Université Clermont Auvergne (UCA)-Centre National de la Recherche Scientifique (CNRS), Ecole Nationale de l'Aviation Civile (ENAC), SCORE, Scientific Consulting for Research and Engineering, European Interdisciplinary Academy of Sciences (EIAS)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Russian Journal of Mathematical Physics
Russian Journal of Mathematical Physics, MAIK Nauka/Interperiodica, 2020, 27 (1), pp.61-75. ⟨10.1134/S1061920820010069⟩
ISSN: 1061-9208
1555-6638
DOI: 10.1134/S1061920820010069⟩
Popis: International audience; One shows that the Feynman’s Path Integral designed for quantum mechanics has an analogous in classical mechanics, the so-called (min, +) Path Integral. This former is build on (min, +)-algebra and (min, +)-analysis which permit to handle in a linear way non-linear problems occurring in mathematical physics. The Hamilton-Jacobi equations and their solutions within this mathematical framework, are introduced and yield to a new interpretation expressed in a duality between action field and particle.
Databáze: OpenAIRE