Semi-Classical Limit and Least Action Principle Revisited with (min,+) Path Integral and Action-Particle Duality
Autor: | Michel Gondran, Abdelouahab Kenoufi, Alexandre Gondran |
---|---|
Přispěvatelé: | Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes (LIMOS), Ecole Nationale Supérieure des Mines de St Etienne-Université Clermont Auvergne (UCA)-Centre National de la Recherche Scientifique (CNRS), Ecole Nationale de l'Aviation Civile (ENAC), SCORE, Scientific Consulting for Research and Engineering, European Interdisciplinary Academy of Sciences (EIAS) |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Field (physics)
Duality (optimization) Statistical and Nonlinear Physics 01 natural sciences Action (physics) Classical limit 010305 fluids & plasmas Interpretation (model theory) Principle of least action symbols.namesake 0103 physical sciences Path integral formulation symbols Feynman diagram [MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] 010306 general physics Mathematical Physics Mathematics Mathematical physics |
Zdroj: | Russian Journal of Mathematical Physics Russian Journal of Mathematical Physics, MAIK Nauka/Interperiodica, 2020, 27 (1), pp.61-75. ⟨10.1134/S1061920820010069⟩ |
ISSN: | 1061-9208 1555-6638 |
DOI: | 10.1134/S1061920820010069⟩ |
Popis: | International audience; One shows that the Feynman’s Path Integral designed for quantum mechanics has an analogous in classical mechanics, the so-called (min, +) Path Integral. This former is build on (min, +)-algebra and (min, +)-analysis which permit to handle in a linear way non-linear problems occurring in mathematical physics. The Hamilton-Jacobi equations and their solutions within this mathematical framework, are introduced and yield to a new interpretation expressed in a duality between action field and particle. |
Databáze: | OpenAIRE |
Externí odkaz: |