Solutions of the three-dimensional radial Dirac equation from the Schr\'odinger equation with one-dimensional Morse potential

Autor: Pedro Alberto, M. G. Garcia, A. S. de Castro, L.B. Castro
Přispěvatelé: Universidade Estadual de Campinas (UNICAMP), DCTA, Universidade Estadual Paulista (Unesp), Physics Department, Universidade Federal do Maranhão
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Scopus
Repositório Institucional da UNESP
Universidade Estadual Paulista (UNESP)
instacron:UNESP
Popis: New exact analytical bound-state solutions of the radial Dirac equation in 3+1 dimensions for two sets of couplings and radial potential functions are obtained via mapping onto the nonrelativistic bound-state solutions of the one-dimensional generalized Morse potential. The eigenfunctions are expressed in terms of generalized Laguerre polynomials, and the eigenenergies are expressed in terms of solutions of equations that can be transformed into polynomial equations. Several analytical results found in the literature, including the Dirac oscillator, are obtained as particular cases of this unified approach.
Comment: arXiv admin note: text overlap with arXiv:1703.00578
Databáze: OpenAIRE