Solutions of the three-dimensional radial Dirac equation from the Schr\'odinger equation with one-dimensional Morse potential
Autor: | Pedro Alberto, M. G. Garcia, A. S. de Castro, L.B. Castro |
---|---|
Přispěvatelé: | Universidade Estadual de Campinas (UNICAMP), DCTA, Universidade Estadual Paulista (Unesp), Physics Department, Universidade Federal do Maranhão |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Physics
High Energy Physics - Theory Polynomial Quantum Physics General Physics and Astronomy Eigenfunction 01 natural sciences 010305 fluids & plasmas Schrödinger equation symbols.namesake Dirac equation 0103 physical sciences Laguerre polynomials symbols Morse potential 010306 general physics Dirac oscillator Mathematical Physics Mathematical physics |
Zdroj: | Repositório Científico de Acesso Aberto de Portugal Repositório Científico de Acesso Aberto de Portugal (RCAAP) instacron:RCAAP Scopus Repositório Institucional da UNESP Universidade Estadual Paulista (UNESP) instacron:UNESP |
Popis: | New exact analytical bound-state solutions of the radial Dirac equation in 3+1 dimensions for two sets of couplings and radial potential functions are obtained via mapping onto the nonrelativistic bound-state solutions of the one-dimensional generalized Morse potential. The eigenfunctions are expressed in terms of generalized Laguerre polynomials, and the eigenenergies are expressed in terms of solutions of equations that can be transformed into polynomial equations. Several analytical results found in the literature, including the Dirac oscillator, are obtained as particular cases of this unified approach. Comment: arXiv admin note: text overlap with arXiv:1703.00578 |
Databáze: | OpenAIRE |
Externí odkaz: |