Green function and Martin kernel for higher-order fractional Laplacians in balls

Autor: Nicola Abatangelo, Sven Jarohs, Alberto Saldaña
Přispěvatelé: Abatangelo N., Jarohs S., Saldana A.
Rok vydání: 2018
Předmět:
Zdroj: Nonlinear Analysis. 175:173-190
ISSN: 0362-546X
DOI: 10.1016/j.na.2018.05.019
Popis: We give the explicit formulas for the Green function and the Martin kernel for all integer and fractional powers of the Laplacian s > 1 in balls. As consequences, we deduce interior and boundary regularity estimates for solutions to linear problems and positivity preserving properties. Our proofs rely on a characterization of suitable s -harmonic functions and on a differential recurrence equation.
Databáze: OpenAIRE