Green function and Martin kernel for higher-order fractional Laplacians in balls
Autor: | Nicola Abatangelo, Sven Jarohs, Alberto Saldaña |
---|---|
Přispěvatelé: | Abatangelo N., Jarohs S., Saldana A. |
Rok vydání: | 2018 |
Předmět: |
Pure mathematics
Applied Mathematics 010102 general mathematics Mathematical analysis Boundary (topology) Characterization (mathematics) 01 natural sciences Boggio's formula 010101 applied mathematics Integer Harmonic function Kernel (statistics) Maximum principle Order (group theory) 0101 mathematics s-harmonic functions Laplace operator Analysis Differential (mathematics) Mathematics |
Zdroj: | Nonlinear Analysis. 175:173-190 |
ISSN: | 0362-546X |
DOI: | 10.1016/j.na.2018.05.019 |
Popis: | We give the explicit formulas for the Green function and the Martin kernel for all integer and fractional powers of the Laplacian s > 1 in balls. As consequences, we deduce interior and boundary regularity estimates for solutions to linear problems and positivity preserving properties. Our proofs rely on a characterization of suitable s -harmonic functions and on a differential recurrence equation. |
Databáze: | OpenAIRE |
Externí odkaz: |