On the global polynomial stabilization and observation with optimal decay rate
Autor: | Chaker Jammazi, Mohamed Boutayeb, Ghada Bouamaied |
---|---|
Přispěvatelé: | Laboratoire d'Ingénierie Mathématique (LIM), Ecole Polytechnique de Tunisie, Ecole Nationale d'Ingénieurs de Tunis (ENIT), Université de Tunis El Manar (UTM), Centre de Recherche en Automatique de Nancy (CRAN), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
0209 industrial biotechnology
Angular momentum Polynomial Observer (quantum physics) General Mathematics General Physics and Astronomy 02 engineering and technology 01 natural sciences Stability (probability) [SPI.AUTO]Engineering Sciences [physics]/Automatic 020901 industrial engineering & automation Polynomial stability Homogeneous feedbacks Applied mathematics Asymptotic estimation 0101 mathematics Optimal decay Homogeneous observers Mathematics Applied Mathematics Homogeneity (statistics) 010102 general mathematics Statistical and Nonlinear Physics Sense (electronics) Homogeneous Closed loop |
Zdroj: | Chaos, Solitons and Fractals Chaos, Solitons and Fractals, Elsevier, 2021, 153, pp.111447. ⟨10.1016/j.chaos.2021.111447⟩ |
ISSN: | 0960-0779 |
DOI: | 10.1016/j.chaos.2021.111447⟩ |
Popis: | International audience; New investigations in the problems of polynomial stabilization are presented in this paper, where some relaxed results related to homogeneity theory leading to this polynomial stability with optimal decay rate are developed. To achieve our analysis, several physical examples are presented showing how we can construct stabilizing feedback laws making these closed loop systems polynomially stable with optimal decay rates. This allows the redesign of (a) homogeneous feedbacks stabilizing polynomially the Heisenberg system in weak sense, (b) and the polynomial observer for the angular momentum satellite with one control input. |
Databáze: | OpenAIRE |
Externí odkaz: |