On the global polynomial stabilization and observation with optimal decay rate

Autor: Chaker Jammazi, Mohamed Boutayeb, Ghada Bouamaied
Přispěvatelé: Laboratoire d'Ingénierie Mathématique (LIM), Ecole Polytechnique de Tunisie, Ecole Nationale d'Ingénieurs de Tunis (ENIT), Université de Tunis El Manar (UTM), Centre de Recherche en Automatique de Nancy (CRAN), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Chaos, Solitons and Fractals
Chaos, Solitons and Fractals, Elsevier, 2021, 153, pp.111447. ⟨10.1016/j.chaos.2021.111447⟩
ISSN: 0960-0779
DOI: 10.1016/j.chaos.2021.111447⟩
Popis: International audience; New investigations in the problems of polynomial stabilization are presented in this paper, where some relaxed results related to homogeneity theory leading to this polynomial stability with optimal decay rate are developed. To achieve our analysis, several physical examples are presented showing how we can construct stabilizing feedback laws making these closed loop systems polynomially stable with optimal decay rates. This allows the redesign of (a) homogeneous feedbacks stabilizing polynomially the Heisenberg system in weak sense, (b) and the polynomial observer for the angular momentum satellite with one control input.
Databáze: OpenAIRE