Characterizations of Hardy spaces associated with Laplace–Bessel operators
Autor: | Cansu Keskin, Ismail Ekincioglu, Vagif S. Guliyev |
---|---|
Přispěvatelé: | Keskin, Cansu, Ekincioğlu, İsmail, Guliyev, Vagif S. |
Rok vydání: | 2019 |
Předmět: |
Mathematics::Classical Analysis and ODEs
Characterization (mathematics) 01 natural sciences Combinatorics symbols.namesake Operator (computer programming) Hardy Space Fourier–Bessel Transform 0103 physical sciences Atomic Decomposition 0101 mathematics High order Mathematical Physics Physics Algebra and Number Theory Laplace transform 010102 general mathematics Hardy space Atomic decomposition symbols Generalized Shift Operator Maximal function Riesz–Bessel Transform 010307 mathematical physics Analysis Bessel function |
Zdroj: | Analysis and Mathematical Physics. 9:2281-2310 |
ISSN: | 1664-235X 1664-2368 |
DOI: | 10.1007/s13324-019-00335-5 |
Popis: | In this paper, we obtain a characterization of H p Δν (Rn +) Hardy spaces by using atoms associated with the radial maximal function, the nontangential maximal function and the grand maximal function related to Δν Laplace–Bessel operator for ν > 0 and 1 < p < ∞. As an application, we further establish an atomic characterization of Hardy spaces H p Δν (Rn +) in terms of the high order Riesz–Bessel transform for 0 < p ≤ 1. Ministry of Education and Science of the Russian Federation: 02. The research of V.S. Guliyev was partially supported by the Grant of the 1 st \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\hbox {st}$$\end{document} Azerbaijan–Russia Joint Grant Competition (Agreement Number No. EIF-BGM-4-RFTF-1/201721/01/1) and by the Ministry of Education and Science of the Russian Federation (Agreement Number No. 02.a03.21.0008). |
Databáze: | OpenAIRE |
Externí odkaz: |