Characterizations of Hardy spaces associated with Laplace–Bessel operators

Autor: Cansu Keskin, Ismail Ekincioglu, Vagif S. Guliyev
Přispěvatelé: Keskin, Cansu, Ekincioğlu, İsmail, Guliyev, Vagif S.
Rok vydání: 2019
Předmět:
Zdroj: Analysis and Mathematical Physics. 9:2281-2310
ISSN: 1664-235X
1664-2368
DOI: 10.1007/s13324-019-00335-5
Popis: In this paper, we obtain a characterization of H p Δν (Rn +) Hardy spaces by using atoms associated with the radial maximal function, the nontangential maximal function and the grand maximal function related to Δν Laplace–Bessel operator for ν > 0 and 1 < p < ∞. As an application, we further establish an atomic characterization of Hardy spaces H p Δν (Rn +) in terms of the high order Riesz–Bessel transform for 0 < p ≤ 1.
Ministry of Education and Science of the Russian Federation: 02.
The research of V.S. Guliyev was partially supported by the Grant of the 1 st \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\hbox {st}$$\end{document} Azerbaijan–Russia Joint Grant Competition (Agreement Number No. EIF-BGM-4-RFTF-1/201721/01/1) and by the Ministry of Education and Science of the Russian Federation (Agreement Number No. 02.a03.21.0008).
Databáze: OpenAIRE