Benchmarking the nonperturbative functional renormalization group approach on the random elastic manifold model in and out of equilibrium
Autor: | Gilles Tarjus, Ivan Balog, Matthieu Tissier |
---|---|
Přispěvatelé: | Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Laboratoire de Physique Théorique des Liquides (LPTL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Statistics and Probability
Physics [PHYS]Physics [physics] random elastic manifold model functional renormalization group disordered systems FOS: Physical sciences Statistical and Nonlinear Physics Disordered Systems and Neural Networks (cond-mat.dis-nn) Fixed point Condensed Matter - Disordered Systems and Neural Networks 01 natural sciences Condensed Matter::Disordered Systems and Neural Networks Manifold 010305 fluids & plasmas Universality (dynamical systems) 0103 physical sciences Functional renormalization group Ising model Statistics Probability and Uncertainty 010306 general physics Scaling Critical dimension Critical exponent ComputingMilieux_MISCELLANEOUS Mathematical physics |
Zdroj: | Journal of Statistical Mechanics: Theory and Experiment Journal of Statistical Mechanics: Theory and Experiment, IOP Publishing, 2019, 2019 (10), pp.103301. ⟨10.1088/1742-5468/ab3da5⟩ |
ISSN: | 1742-5468 |
DOI: | 10.1088/1742-5468/ab3da5⟩ |
Popis: | Criticality in the class of disordered systems comprising the random-field Ising model (RFIM) and elastic manifolds in a random environment is controlled by zero-temperature fixed points that must be treated through a functional renormalization group. We apply the nonperturbative functional renormalization group approach that we have previously used to describe the RFIM in and out of equilibrium [Balog-Tarjus-Tissier, Phys. Rev. B 97, 094204 (2018)] to the simpler and by now well-studied case of the random elastic manifold model. We recover the main known properties, critical exponents and scaling functions, of both the pinned phase of the manifold at equilibrium and the depinning threshold in the athermally and quasi-statically driven case for any dimension $0 Comment: 38 pages, 6 figures |
Databáze: | OpenAIRE |
Externí odkaz: |