Benchmarking the nonperturbative functional renormalization group approach on the random elastic manifold model in and out of equilibrium

Autor: Gilles Tarjus, Ivan Balog, Matthieu Tissier
Přispěvatelé: Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Laboratoire de Physique Théorique des Liquides (LPTL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Journal of Statistical Mechanics: Theory and Experiment
Journal of Statistical Mechanics: Theory and Experiment, IOP Publishing, 2019, 2019 (10), pp.103301. ⟨10.1088/1742-5468/ab3da5⟩
ISSN: 1742-5468
DOI: 10.1088/1742-5468/ab3da5⟩
Popis: Criticality in the class of disordered systems comprising the random-field Ising model (RFIM) and elastic manifolds in a random environment is controlled by zero-temperature fixed points that must be treated through a functional renormalization group. We apply the nonperturbative functional renormalization group approach that we have previously used to describe the RFIM in and out of equilibrium [Balog-Tarjus-Tissier, Phys. Rev. B 97, 094204 (2018)] to the simpler and by now well-studied case of the random elastic manifold model. We recover the main known properties, critical exponents and scaling functions, of both the pinned phase of the manifold at equilibrium and the depinning threshold in the athermally and quasi-statically driven case for any dimension $0
Comment: 38 pages, 6 figures
Databáze: OpenAIRE