IC-Based Neuro-Stimulation Environment for Arbitrary Waveform Generation

Autor: Gilles N'Kaoua, Yannick Bornat, Jonathan Castelli, Louis Regnacq, Florian Kolbl, Sylvie Renaud, Noëlle Lewis
Přispěvatelé: Equipes Traitement de l'Information et Systèmes (ETIS - UMR 8051), CY Cergy Paris Université (CY)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de l'Electronique et de ses Applications (ENSEA), Laboratoire de l'intégration, du matériau au système (IMS), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université Sciences et Technologies - Bordeaux 1
Jazyk: angličtina
Rok vydání: 2021
Předmět:
TK7800-8360
Computer Networks and Communications
Computer science
medicine.medical_treatment
Stimulation
02 engineering and technology
03 medical and health sciences
0302 clinical medicine
Application-specific integrated circuit
biomedical engineering
0202 electrical engineering
electronic engineering
information engineering

medicine
Electronic engineering
Hardware_INTEGRATEDCIRCUITS
Waveform
Electrical and Electronic Engineering
Field-programmable gate array
electrical stimulation
Neurostimulation
Blocking (radio)
biomedical electronics
020208 electrical & electronic engineering
Bandwidth (signal processing)
TheoryofComputation_GENERAL
[SPI.TRON]Engineering Sciences [physics]/Electronics
Hardware and Architecture
Control and Systems Engineering
Signal Processing
[SDV.IB]Life Sciences [q-bio]/Bioengineering
[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]
Electronics
030217 neurology & neurosurgery
Voltage
Hardware_LOGICDESIGN
neurostimulation
Zdroj: Electronics
Volume 10
Issue 15
Electronics, Penton Publishing Inc., 2021, 10 (15), pp.1867. ⟨10.3390/electronics10151867⟩
Electronics, Vol 10, Iss 1867, p 1867 (2021)
ISSN: 2079-9292
0883-4989
DOI: 10.3390/electronics10151867
Popis: Electrical stimulation of the nervous system is commonly based on biphasic stimulation waveforms, which limits its relevance for some applications, such as selective stimulation. We propose in this paper a stimulator capable of delivering arbitrary waveforms to electrodes, and suitable for non-conventional stimulation strategies. Such a system enables in vivo stimulation protocols with optimized efficacy or energy efficiency. The designed system comprises a High Voltage CMOS ASIC generating a configurable stimulating current, driven by a digital circuitry implemented on a FPGA. After fabrication, the ASIC and system were characterized and tested
they successfully generated programmable waveforms with a frequential content up to 1.2 MHz and a voltage compliance between [−17.9
+18.3] V. The system is not optimum when compared to single application stimulators, but no embedded stimulator in the literature offers an equivalent bandwidth which allows the wide range of stimulation paradigms, including high-frequency blocking stimulation. We consider that this stimulator will help test unconventional stimulation waveforms and can be used to generate proof-of-concept data before designing implantable and application-dedicated implantable stimulators.
Databáze: OpenAIRE