IC-Based Neuro-Stimulation Environment for Arbitrary Waveform Generation
Autor: | Gilles N'Kaoua, Yannick Bornat, Jonathan Castelli, Louis Regnacq, Florian Kolbl, Sylvie Renaud, Noëlle Lewis |
---|---|
Přispěvatelé: | Equipes Traitement de l'Information et Systèmes (ETIS - UMR 8051), CY Cergy Paris Université (CY)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de l'Electronique et de ses Applications (ENSEA), Laboratoire de l'intégration, du matériau au système (IMS), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université Sciences et Technologies - Bordeaux 1 |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
TK7800-8360
Computer Networks and Communications Computer science medicine.medical_treatment Stimulation 02 engineering and technology 03 medical and health sciences 0302 clinical medicine Application-specific integrated circuit biomedical engineering 0202 electrical engineering electronic engineering information engineering medicine Electronic engineering Hardware_INTEGRATEDCIRCUITS Waveform Electrical and Electronic Engineering Field-programmable gate array electrical stimulation Neurostimulation Blocking (radio) biomedical electronics 020208 electrical & electronic engineering Bandwidth (signal processing) TheoryofComputation_GENERAL [SPI.TRON]Engineering Sciences [physics]/Electronics Hardware and Architecture Control and Systems Engineering Signal Processing [SDV.IB]Life Sciences [q-bio]/Bioengineering [SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC] Electronics 030217 neurology & neurosurgery Voltage Hardware_LOGICDESIGN neurostimulation |
Zdroj: | Electronics Volume 10 Issue 15 Electronics, Penton Publishing Inc., 2021, 10 (15), pp.1867. ⟨10.3390/electronics10151867⟩ Electronics, Vol 10, Iss 1867, p 1867 (2021) |
ISSN: | 2079-9292 0883-4989 |
DOI: | 10.3390/electronics10151867 |
Popis: | Electrical stimulation of the nervous system is commonly based on biphasic stimulation waveforms, which limits its relevance for some applications, such as selective stimulation. We propose in this paper a stimulator capable of delivering arbitrary waveforms to electrodes, and suitable for non-conventional stimulation strategies. Such a system enables in vivo stimulation protocols with optimized efficacy or energy efficiency. The designed system comprises a High Voltage CMOS ASIC generating a configurable stimulating current, driven by a digital circuitry implemented on a FPGA. After fabrication, the ASIC and system were characterized and tested they successfully generated programmable waveforms with a frequential content up to 1.2 MHz and a voltage compliance between [−17.9 +18.3] V. The system is not optimum when compared to single application stimulators, but no embedded stimulator in the literature offers an equivalent bandwidth which allows the wide range of stimulation paradigms, including high-frequency blocking stimulation. We consider that this stimulator will help test unconventional stimulation waveforms and can be used to generate proof-of-concept data before designing implantable and application-dedicated implantable stimulators. |
Databáze: | OpenAIRE |
Externí odkaz: |