The differential form spectrum of quaternionic hyperbolic spaces

Autor: Emmanuel Pedon
Přispěvatelé: Pedon, Emmanuel, Laboratoire de Mathématiques de Reims (LMR), Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Předmět:
Zdroj: Bulletin des Sciences Mathématiques
Bulletin des Sciences Mathématiques, Elsevier, 2005, 129 (3), pp.227-265
ISSN: 0007-4497
DOI: 10.1016/j.bulsci.2004.06.004
Popis: International audience; By using harmonic analysis and representation theory, we determine explicitly the $L^2$ spectrum of the Hodge-de~Rham Laplacian acting on quaternionic hyperbolic spaces and we show that the unique possible discrete eigenvalue and the lowest continuous eigenvalue can both be realized by some subspace of hypereffective differential forms. Similar results are obtained also for the Bochner Laplacian.
Databáze: OpenAIRE