The differential form spectrum of quaternionic hyperbolic spaces
Autor: | Emmanuel Pedon |
---|---|
Přispěvatelé: | Pedon, Emmanuel, Laboratoire de Mathématiques de Reims (LMR), Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Předmět: |
Mathematics(all)
Spectral theory MSC 22E30 53C35 58J50 Differential form General Mathematics Théorie spectrale 01 natural sciences Representation theory [MATH.MATH-RT] Mathematics [math]/Representation Theory [math.RT] 0101 mathematics Eigenvalues and eigenvectors Mathematics [MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT] 010102 general mathematics Spectrum (functional analysis) Mathematical analysis Quaternionic hyperbolic spaces Mathematics::Spectral Theory Differential forms Espace hyperbolique quaternionique 010101 applied mathematics Formes différentielles Quaternionic representation Laplacien Laplacian Laplace operator Subspace topology |
Zdroj: | Bulletin des Sciences Mathématiques Bulletin des Sciences Mathématiques, Elsevier, 2005, 129 (3), pp.227-265 |
ISSN: | 0007-4497 |
DOI: | 10.1016/j.bulsci.2004.06.004 |
Popis: | International audience; By using harmonic analysis and representation theory, we determine explicitly the $L^2$ spectrum of the Hodge-de~Rham Laplacian acting on quaternionic hyperbolic spaces and we show that the unique possible discrete eigenvalue and the lowest continuous eigenvalue can both be realized by some subspace of hypereffective differential forms. Similar results are obtained also for the Bochner Laplacian. |
Databáze: | OpenAIRE |
Externí odkaz: |