Biodegradation of phenol by Chlamydomonas reinhardtii

Autor: Theocharis T. Nazos, Demetrios F. Ghanotakis, Leonidas Mavroudakis, Spiros A. Pergantis
Rok vydání: 2020
Předmět:
Zdroj: Photosynthesis Research. 144:383-395
ISSN: 1573-5079
0166-8595
DOI: 10.1007/s11120-020-00756-5
Popis: The data presented in this particular study demonstrate that the biodegradation of phenol by Chlamydomonas reinhardtii is a dynamic bioenergetic process mainly affected by the production of catechol and the presence of a growth-promoting substrate in the culture medium. The study focused on the regulation of the bioenergetic equilibrium resulting from production of catechol after phenol oxidation. Catechol was identified by HPLC-UV and HPLC-ESI-MS/MS. Growth measurements revealed that phenol is a growth-limiting substrate for microalgal cultures. The Chlamydomonas cells proceed to phenol biodegradation because they require carbon reserves for maintenance of homeostasis. In the presence of acetic acid (a growth-promoting carbon source), the amount of catechol detected in the culture medium was negligible; apparently, acetic acid provides microalgae with sufficient energy reserves to further biodegrade catechol. It has been shown that when microalgae do not have sufficient energy reserves, a significant amount of catechol is released into the culture medium. Chlamydomonas reinhardtii acts as a versatile bioenergetic machine by regulating its metabolism under each particular set of growth conditions, in order to achieve an optimal balance between growth, homeostasis maintenance and biodegradation of phenol. The novel findings of this study reveal a paradigm showing how microalgal metabolic versatility can be used in the bioremediation of the environment and in potential large-scale applications.
Databáze: OpenAIRE