Products of Daniell integrals

Autor: Rompf, Gerhard, Kersting, Götz
Rok vydání: 2022
Předmět:
DOI: 10.48550/arxiv.2208.00762
Popis: We show that for any two Daniell integrals $J$ and $K$, given on some Riesz spaces $S$ and $T$, there exists a product integral $I$ on the space $R$, which is the smallest Riesz space containing the tensor product of $S$ and $T$. The integral $I$ is uniquely characterized by the property $I(f\otimes g)=J(f)K(g)$ for all $f\in S$, $g\in T$. Also a Fubini-type theorem is presented.
Comment: 7 pages
Databáze: OpenAIRE