Products of Daniell integrals
Autor: | Rompf, Gerhard, Kersting, Götz |
---|---|
Rok vydání: | 2022 |
Předmět: | |
DOI: | 10.48550/arxiv.2208.00762 |
Popis: | We show that for any two Daniell integrals $J$ and $K$, given on some Riesz spaces $S$ and $T$, there exists a product integral $I$ on the space $R$, which is the smallest Riesz space containing the tensor product of $S$ and $T$. The integral $I$ is uniquely characterized by the property $I(f\otimes g)=J(f)K(g)$ for all $f\in S$, $g\in T$. Also a Fubini-type theorem is presented. Comment: 7 pages |
Databáze: | OpenAIRE |
Externí odkaz: |