Forcing axioms and the Galvin number

Autor: Menachem Magidor, Yair Hayut, Shimon Garti, Haim Horowitz
Rok vydání: 2021
Předmět:
Zdroj: Periodica Mathematica Hungarica. 84:250-258
ISSN: 1588-2829
0031-5303
DOI: 10.1007/s10998-021-00407-9
Popis: We study the Galvin property. We show that various square principles imply that the cofinality of the Galvin number is uncountable (or even greater than $$\aleph _1$$ ). We prove that the proper forcing axiom is consistent with a strong negation of the Glavin property.
Databáze: OpenAIRE