Forcing axioms and the Galvin number
Autor: | Menachem Magidor, Yair Hayut, Shimon Garti, Haim Horowitz |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Periodica Mathematica Hungarica. 84:250-258 |
ISSN: | 1588-2829 0031-5303 |
DOI: | 10.1007/s10998-021-00407-9 |
Popis: | We study the Galvin property. We show that various square principles imply that the cofinality of the Galvin number is uncountable (or even greater than $$\aleph _1$$ ). We prove that the proper forcing axiom is consistent with a strong negation of the Glavin property. |
Databáze: | OpenAIRE |
Externí odkaz: |