Essential selfadjointness and invariance of the essential spectrum for Dirac operators

Autor: Masaharu Arai, Osanobu Yamada
Rok vydání: 1982
Předmět:
Zdroj: Publications of the Research Institute for Mathematical Sciences. 18:973-985
ISSN: 0034-5318
DOI: 10.2977/prims/1195183289
Popis: where «_,(j = 1, 2, 3) and a4 = /? are Hermitian symmetric, constant, 4x4 matrices and satisfy the anti-commutation relations (U) aLjQik + aikaij = 2djkI (/, k = l, 2, 3, 4) (/ is the 4x4 unit matrix). Throughout this paper the potential Q(x) is assumed to be an Hermitian symmetric 4x4 matrix-valued measurable function. The Dirac operator is treated in the Hilbert space ^ = [L(U)] associated with the norm
Databáze: OpenAIRE