Essential selfadjointness and invariance of the essential spectrum for Dirac operators
Autor: | Masaharu Arai, Osanobu Yamada |
---|---|
Rok vydání: | 1982 |
Předmět: | |
Zdroj: | Publications of the Research Institute for Mathematical Sciences. 18:973-985 |
ISSN: | 0034-5318 |
DOI: | 10.2977/prims/1195183289 |
Popis: | where «_,(j = 1, 2, 3) and a4 = /? are Hermitian symmetric, constant, 4x4 matrices and satisfy the anti-commutation relations (U) aLjQik + aikaij = 2djkI (/, k = l, 2, 3, 4) (/ is the 4x4 unit matrix). Throughout this paper the potential Q(x) is assumed to be an Hermitian symmetric 4x4 matrix-valued measurable function. The Dirac operator is treated in the Hilbert space ^ = [L(U)] associated with the norm |
Databáze: | OpenAIRE |
Externí odkaz: |