Almost Everywhere Convergence of the Cesàro Means of Two Variablewalsh–Fourier Series with Variable Parameters

Autor: György Gát, A. A. Abu Joudeh
Rok vydání: 2021
Předmět:
Zdroj: Ukrainian Mathematical Journal. 73:337-358
ISSN: 1573-9376
0041-5995
DOI: 10.1007/s11253-021-01928-9
Popis: It is shown that the maximal operator of some (C, βn)-means of cubical partial sums of two variable Walsh–Fourier series of integrable functions is of weak type (L1,L1). Moreover, the (C, βn)-means $$ {\sigma}_{2^n}^{\beta_n}f $$ of the function f ∈ L1 converge a.e. to f for f ∈ L1(I2), where I is the Walsh group for some sequences 1 > βn ↘ 0.
Databáze: OpenAIRE