Almost Everywhere Convergence of the Cesàro Means of Two Variablewalsh–Fourier Series with Variable Parameters
Autor: | György Gát, A. A. Abu Joudeh |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Ukrainian Mathematical Journal. 73:337-358 |
ISSN: | 1573-9376 0041-5995 |
DOI: | 10.1007/s11253-021-01928-9 |
Popis: | It is shown that the maximal operator of some (C, βn)-means of cubical partial sums of two variable Walsh–Fourier series of integrable functions is of weak type (L1,L1). Moreover, the (C, βn)-means $$ {\sigma}_{2^n}^{\beta_n}f $$ of the function f ∈ L1 converge a.e. to f for f ∈ L1(I2), where I is the Walsh group for some sequences 1 > βn ↘ 0. |
Databáze: | OpenAIRE |
Externí odkaz: |